Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multifunctional "core-shell" nanoparticles-based gene delivery for treatment of aggressive melanoma.

Biomaterials 2016 December
Gene therapy may be a promising and powerful strategy for cancer treatment, but efficient targeted gene delivery in vivo has so far remained challenging. Here, we developed a well-tailored and versatile "core-shell" ternary system (RRPHC) of systemic gene delivery for treatment of aggressive melanoma. The capsid-like "shell" of this system was engineered to mediate depth penetration to tissues, simultaneously target the CD44 receptors and integrin αv β3 receptors overexpressed on neovasculature and most malignant tumor cells, while the "core" was responsible for nucleus-targeting and effective transfection. The RRPHC ternary complexes enhanced cellular uptake via dual receptor-mediated endocytosis, improved the endosomal escape and significantly promoted the plasmid penetration into the nucleus. Notably, RRPHC ternary complexes exhibited ultra-high gene transfection efficiency (∼100% in B16F10 cells), which surpassed that of commercial transfection agents, PEI 25K, Lipofectamine 2000 and even Lipofectamine 3000. Especially, RRPHC ternary complexes showed excellent serum resistance and remained high gene transfection efficacy (∼100%) even in medium containing 30% serum. In vivo biodistribution imaging demonstrated RRPHC ternary complexes possessed much more accumulation and extensive distribution throughout tumor regions while minimal location in other organs. Furthermore, systemic delivery of the pro-apoptotic mTRAIL gene to tumor xenografts by RRPHC ternary complexes resulted in remarkable inhibition of melanoma, with no systemic toxicity. These results demonstrated that the designed novel RRPHC ternary complexes might be a promising gene delivery system for targeted cancer therapy in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app