Add like
Add dislike
Add to saved papers

Understanding Binding of Cyano-Adamantyl Derivatives to Pillar[6]arene Macrocycle from Density Functional Theory.

The ωB97X-based density functional theory has been employed to characterize molecular interactions between adamantane carbonitrile (ACN) or adamantane methyl carbonitrile (AMCN) and the ethylated pillar[6]arene (EtP[6]) molecular receptor. The inclusion complexes in 1:1 stoichiometry are stabilized through noncovalent interactions such as hydrogen bonding, C-H···π and dipole-dipole interactions. Gibbs free energies accompanying the encapsulation of ACN or AMCN within EtP[6] revealed that the formation of complex is spontaneous and thermodynamically favorable. Underlying interactions are unraveled through quantum theory of atoms in molecules and molecular electrostatic potential topography. Structural changes consequent to guest encapsulation have been rationalized through characteristic infrared and NMR spectra. The frequency downshifts for -C≡N stretching of the guest accompanying the complexation has been attributed to hydrogen bonding and C-H···π interactions. The methylene vibrations of ACN reveal the frequency shifts in opposite directions consequent to distinct binding features with EtP[6] host. The selective binding of AMCN further brings about a significant distortion of the host cavity. Calculated1 H NMR spectra of ACN and AMCN complexes show shielded signals for the adamantyl protons in consonance with experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app