Add like
Add dislike
Add to saved papers

Li + /Mg 2+ Hybrid-Ion Batteries with Long Cycle Life and High Rate Capability Employing MoS 2 Nano Flowers as the Cathode Material.

The demand for large-scale and safe energy storage is increasing rapidly due to the strong push for smartphones and electric vehicles. As a result, Li+ /Mg2+ hybrid-ion batteries (LMIBs) combining a dendrite-free deposition of Mg anode and Li+ intercalation cathode have attracted considerable attention. Here, a LMIB with hydrothermal-prepared MoS2 nano flowers as cathode material was prepared. The battery showed remarkable electrochemical properties with a large discharge capacity (243 mAh g-1 at the 0.1 C rate), excellent rate capability (108 mAh g-1 at the 5 C rate), and long cycle life (87.2 % capacity retention after 2300 cycles). Electrochemical analysis showed that the reactions occurring in the battery cell involved Mg stripping/plating at the anode side and Li+ intercalation at the cathode side with a small contribution from Mg2+ adsorption. The excellent electrochemical performance and extremely safe cell system show promise for its use in practical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app