Add like
Add dislike
Add to saved papers

Three Gel States of Colloidal Composites Consisting of Polymer-Brush-Afforded Silica Particles and a Nematic Liquid Crystal with Distinct Viscoelastic and Optical Properties.

Colloidal composites consisting of polymer-brush-afforded silica particles (P-SiPs) and a nematic liquid crystal (LC) exhibited three gel states with distinct viscoelastic and/or optical properties depending on temperature: (1) opaque hard gel, (2) translucent hard gel, and (3) translucent soft gel. We demonstrated that the transitions of the optical property and the hardness of the gels were due to the phase transition of the LC matrix and the glass transition of the grafted polymers of P-SiPs, respectively. We then revealed that the gelation (the formation of the translucent soft gel) was caused by the phase separation of P-SiPs and LC matrix in an isotropic phase based on spinodal decomposition. In addition, the particle concentration and molecular weight of the grafted polymer of P-SiPs were observed to significantly affect the elastic moduli and thermal stability of the composite gels. By the addition of an azobenzene derivative into an LC matrix, we achieved photochemical switching of the transparency of the composites based on the photoinduced phase transition of LCs, while keeping self-supporting ability of the composite gel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app