COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Selective androgen receptor modulators: comparative excretion study of bicalutamide in bovine urine and faeces.

Besides their development for therapeutic purposes, non-steroidal selective androgen receptor modulators (non-steroidal SARMs) are also known to impact growth-associated pathways as ligands of androgenic receptors (AR). They present a potential for abuse in sports and food-producing animals as an interesting alternative to anabolic androgenic steroids (AAS). These compounds are easily available and could therefore be (mis)used in livestock production as growth promoters. To prevent such practices, dedicated analytical strategies should be developed for specific and sensitive detection of these compounds in biological matrices. The present study focused on Bicalutamide, a non-steroidal SARM used in human treatment of non-metastatic prostate cancer because of its anti-androgenic activity exhibiting no anti-anabolic effects. To select the most appropriate matrix to be used for control purposes, different animal matrices (urine and faeces) have been investigated and SARM metabolism studied to highlight relevant metabolites of such treatments and establish associated detection time windows. The aim of this work was thus to compare the urinary and faecal eliminations of bicalutamide in a calf, and investigate phase I and II metabolites. The results in both matrices showed that bicalutamide was very rapidly and mainly excreted under its free form. The concentration levels were observed as higher in faeces (ppm) than urine (ppb); although both matrices were assessed as suitable for residue control. The metabolites found were consistent with hydroxylation (phase I reaction) combined or not with glucuronidation and sulfation (phase II reactions). Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app