JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular mechanisms underlying inhibition of STIM1-Orai1-mediated Ca 2+ entry induced by 2-aminoethoxydiphenyl borate.

Store-operated Ca2+ entry (SOCE) mediated by STIM1 and Orai1 is crucial for Ca2+ signaling and homeostasis in most cell types. 2-Aminoethoxydiphenyl borate (2-APB) is a well-described SOCE inhibitor, but its mechanisms of action remain largely elusive. Here, we show that 2-APB does not affect the dimeric state of STIM1, but enhances the intramolecular coupling between the coiled-coil 1 (CC1) and STIM-Orai-activating region (SOAR) of STIM1, with subsequent reduction in the formation of STIM1 puncta in the absence of Orai1 overexpression. 2-APB also inhibits Orai1 channels, directly inhibiting Ca2+ entry through the constitutively active, STIM1-independent Orai1 mutants, Orai1-P245T and Orai1-V102A. When unbound from STIM1, the constitutively active Orai1-V102C mutant is not inhibited by 2-APB. Thus, we used Orai1-V012C as a tool to examine whether 2-APB can also inhibit the coupling between STIM1 and Orai1. We reveal that the functional coupling between STIM1 and Orai1-V102C is inhibited by 2-APB. This inhibition on coupling is indirect, arising from 2-APB's action on STIM1, and it is most likely mediated by functional channel residues in the Orai1 N-terminus. Overall, our findings on this two-site inhibition mediated by 2-APB provide new understanding on Orai1-activation by STIM1, important to future drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app