Add like
Add dislike
Add to saved papers

High internal ionic liquid phase emulsion stabilized by metal-organic frameworks.

Soft Matter 2016 November 5
The emulsification of metal-organic frameworks (MOFs) for the two immiscible phases of water and ionic liquid (IL) was investigated for the first time. It was found that Ni-BDC (BDC = 1,4-dicarboxybenzene) can emulsify water and ILs and favor the formation of high internal phase emulsions (HIPEs) under certain experimental conditions. The microstructures of the HIPEs were characterized by confocal laser scanning microscopy using a fluorescent dye Rhodamine B, which proves that the HIPEs are the IL-in-water type. Further results reveal that the HIPE forms during the IL-in-water to water-in-IL emulsion inversion. The possibilities of the HIPE formation by other MOFs (Cu-BDC and Zn-BDC) were explored and the mechanism for HIPE formation was discussed. The MOF-stabilized HIPE was applied to the in situ synthesis of a MOF/polymer composite by HIPE polymerization. The macroporous MOF/polyacrylamide network and MOF/polystyrene microspheres were obtained from the HIPEs, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app