Add like
Add dislike
Add to saved papers

Design of multichannel functional near-infrared spectroscopy system with application to propofol and sevoflurane anesthesia monitoring.

Neurophotonics 2016 October
Monitoring the changes of cerebral hemodynamics and the state of consciousness during general anesthesia (GA) is clinically important. There is a great need for developing advanced detectors to investigate the physiological processes of the brain during GA. We developed a multichanneled, functional near-infrared spectroscopy (fNIRS) system device and applied it to GA operation monitoring. The cerebral hemodynamic data from the forehead of 11 patients undergoing propofol and sevoflurane anesthesia were analyzed. The concentration changes of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and cerebral tissue heart rate were determined from the raw optical information based on the discrete stationary wavelet transform. This custom-made device provides an easy-to-build solution for continuous wave-fNIRS system, with customized specifications. The developed device has a potential value in cerebral monitoring in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app