Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO 2 Uptake and Detection of Nitroaromatics.

Scientific Reports 2016 October 12
A self-catenated Zn(II)-organic framework formulated as [Zn2 (3,3'-bpeab)(oba)2 ]·DMF (1) exhibiting a six-connected 44 ·610 ·8 topology has been successfully synthesized through the mixed-ligand of kinked 3,3'-bis[2-(4-pyridyl)ethenyl]azobenzene (3,3'-bpeab) and 4,4'-oxybis-benzoic acid (H2 oba) under solvothermal condition. UV light triggers isomerization of complex 1 in a single-crystal-to-single-crystal (SCSC) manner, giving rise to a conformational supramolecular isomer 1_UV through the pedal motion of photoresponsive double bonds. Dynamic photo-switching in the obtained light-responsive supramolecular isomers leads to instantly reversible CO2 uptake. Furthermore, the ligand originated fluorescence emission of water-resistant complex 1 is selectively sensitive to 4-nitrotoluene (4-NT) owing to a higher quenching efficiency of the perilous explosive over other structurally similar nitroaromatics, prefiguring the potentials of 1 as a fluorescence sensor towards 4-NT in aquatic media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app