Add like
Add dislike
Add to saved papers

Maraviroc ameliorates the increased adipose tissue macrophage recruitment induced by a high-fat diet in a mouse model of obesity.

Antiviral Therapy 2016 October 12
BACKGROUND: Any strategy designed to decrease the macrophage content in adipose tissue (AT) is of great value as a way to decrease inflammation in this fat depot and also as a way to prevent or treat obesity and associated disorders. Maraviroc (MVC), a CCR5 antagonist approved for the treatment of HIV-infected patients, has beneficial effects on metabolism. The objective of this study was to investigate the effects of MVC on AT macrophage recruitment in a mouse model of obesity. The plausible underlying mechanisms of action were also investigated.

METHODS: 32 male C57BL/6 mice were randomly assigned to the following groups: control, MVC (300 mg/l MVC in drinking water), high-fat diet (HFD) or HFD+MVC. After 16 weeks of treatment, histopathological and molecular analyses were performed on epididymal fat.

RESULTS: Our results demonstrated that MVC reduced the presence of macrophages in epididymal fat despite the ingestion of an HFD. The inhibition of MCP-1 gene expression and JNK signalling pathway along with the upregulation of protective cytokines such as cardiotrophin-1 could contribute to these actions. MVC effects on AT macrophage recruitment were associated with a lower body weight gain and a partial improvement in insulin resistance despite an HFD.

CONCLUSIONS: We have demonstrated the ability of MVC to ameliorate the increased AT macrophage recruitment induced by an HFD in a mouse model of obesity. These actions could be of interest when designing antiretroviral treatments in HIV-patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app