Add like
Add dislike
Add to saved papers

Cyclosporin A protects against Lead neurotoxicity through inhibiting mitochondrial permeability transition pore opening in nerve cells.

Neurotoxicology 2016 December
Mitochondria play a key role in the process of lead (Pb)-induced impairment in nervous system. To further clarify the underlying mechanism of Pb neurotoxicity, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and cyclophilin D (CyPD), a component of MPT pore (MPTP), in Pb-induced mitochondrial apoptosis in nerve cells. In SH-SY5Y and PC12 cells, Cyclosporin A (CSA), a special inhibitor of CyPD, could alleviate cell death, lactate dehydrogenase (LDH) leakage and adenosine 5 triphosphate (ATP) decrease caused by PbAc. In the following experiments, we found PbAc increased the protein level of CyPD and induced MPT pore (MPTP) opening. When cells were pretreated with CSA to inhibit MPTP opening, the Pb-induced impairment of mitochondrial morphology (swelling and rupture) and the loss of mitochondria were attenuated. In addition, CSA obviously ameliorated the Pb-induced damage of mitochondrial function, such as reactive oxygen species (ROS) boost and mitochondrial membrane potential (MMP) collapse, as well as the release of cytochrome C (Cyto C) and apoptosis-inducing factor (AIF) from mitochondria. These beneficial effects could finally result in cell survival under Pb-exposure conditions. Furthermore, scavenging ROS also significantly abrogated MPTP opening and attenuated Pb neurotoxicity. Therefore, we found that MPT played an important role in Pb-induced mitochondrial damage and, ultimately, cell death. Our results provided a potential strategy for inhibiting PbAc neurotoxicity. However, due to the high Pb concentrations used in this study further investigations at Pb concentrations closer to human exposure are needed to verify the results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app