Add like
Add dislike
Add to saved papers

Whole-cell biosensor of cellobiose and application to wood decay detection.

Journal of Biotechnology 2016 December 11
Fungal biodegradation of wood is one of the main threats regarding its use as a material. So far, the detection of this decaying process is empirically assessed by loss of mass, when the fungal attack is advanced and woody structure already damaged. Being able to detect fungal attack on wood in earlier steps is thus of special interest for the wood economy. In this aim, we designed here a new diagnostic tool for wood degradation detection based on the bacterial whole-cell biosensor technology. It was designed in diverting the soil bacteria Streptomyces CebR sensor system devoted to cellobiose detection, a cellulolytic degradation by-product emitted by lignolytic fungi since the onset of wood decaying process. The conserved regulation scheme of the CebR system among Streptomyces allowed constructing a molecular tool easily transferable in different strains or species and enabling the screen for optimal host strains for cellobiose detection. Assays are performed in microplates using one-day culture lysates. Diagnostic is performed within one hour by a spectrophotometric measuring of the cathecol deshydrogenase activity. The selected biosensor was able to detect specifically cellobiose at concentrations similar to those measured in decaying wood and in a spruce leachate attacked by a lignolytic fungus, indicating a high potential of applicability to detect ongoing wood decay process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app