Add like
Add dislike
Add to saved papers

Gene expression profiling of the astrocyte transcriptome in multiple sclerosis normal appearing white matter reveals a neuroprotective role.

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS). White matter lesions in MS are surrounded by areas of non-demyelinated normal appearing white matter (NAWM) with complex pathology, including blood brain barrier dysfunction, axonal damage and glial activation. Astrocytes, the most abundant cell type within the CNS, may respond and/or contribute to lesion pathogenesis. We aimed to characterise the transcriptomic profile of astrocytes in NAWM to determine whether specific glial changes exist in the NAWM which contribute to lesion development or prevent disease progression. Astrocytes were isolated from control and NAWM by laser capture microdissection (LCM), using glial fibrillary acidic protein (GFAP) as a marker, and the astrocyte transcriptome determined using microarray analysis. 452 genes were significantly differentially expressed (208 up-regulated and 244 down-regulated, FC≥1.5 and p-value≤0.05). Within the NAWM, astrocytes were associated with significant upregulation of genes involved in the control of iron homeostasis (including metallothionein-1 and -2, ferritin light chain and transferrin), oxidative stress responses, the immune response and neurotrophic support. These findings suggest a neuroprotective role of astrocytes in the NAWM in MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app