Add like
Add dislike
Add to saved papers

Amphiphilic Diblock Co-polymers Bearing a Cysteine Junction Group: Synthesis, Encapsulation of Inorganic Nanoparticles, and Near-Infrared Photoresponsive Properties.

Encapsulation of inorganic nanoparticles (NPs) in the interfaces of amphiphilic vesicles is a challenging task. The traditional strategy is to use amphiphilic triblock co-polymers, which possess two outer blocks for building the walls and coronas of the vesicles, and one middle NP binding block for localizing NPs at the vesicle interfaces. In this manuscript, we describe the design and synthesis of an amphiphilic diblock co-polymer, that is, PEG-SH-b-PS (PEG=poly(ethylene glycol), PS=polystyrene) bearing a cysteine junction with one free pendant thiol group at the center point between the hydrophilic poly(ethylene glycol) block and the hydrophobic polystyrene block. The amphiphilicity-driven self-assembly in aqueous solution of the pure linear diblock co-polymer PEG-SH-b-PS and the corresponding amphiphilic PEG-SH-b-PS/gold NPs (GNPs) nanocomposites is examined. From TEM observations of the self-assembled samples containing the conjugated GNPs, it can be concluded that most of the GNPs are dispersed at the interfaces of the formed vesicles. In addition, near-infrared (NIR)-absorbing copper monosulfide (CuS) NPs are also encapsulated into the PEG-SH-b-PS vesicles. Due to the photothermal heating effect of the CuS NPs, the corresponding PEG-SH-b-PS/CuSNPs vesicles can disassemble and release the embedded cargos under NIR illumination, which endows this nanocomposite material with potential in biomedical applications, such as cancer imaging, photothermal therapy, and drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app