Add like
Add dislike
Add to saved papers

The Development of a Thin-Filmed, Non-Invasive Tissue Perfusion Sensor to Quantify Capillary Pressure Occlusion of Explanted Organs.

A new thin-filmed perfusion sensor was developed using a heat flux gauge, thin-film thermocouple, and a heating element. This sensor, termed "CHFT+", is an enhancement of the previously established CHFT (combined heat flux - temperature) sensor technology predominately used to quantify the severity of burns [1]. The CHFT+ sensor was uniquely designed to measure tissue perfusion on explanted organs destined for transplantation, but could be functionalized and used in a wide variety of other biomedical applications. Exploiting the thin and semi-flexible nature of the new CHFT+ sensor assembly, perfusion measurements can be made from the underside of the organ - providing a quantitative, indirect measure of capillary pressure occlusion. Results from a live tissue test demonstrated, for the first time, the effects of pressure occlusion on an explanted porcine kidney. CHFT+ sensors were placed on top of and underneath 18 kidneys to measure and compare perfusion at perfusate temperatures of 5˚C and 20˚C. The data collected shows greater perfusion on the topside than the underside of the specimen for the length of the experiment. This indicates that pressure occlusion is truly affecting the perfusion and thus, the overall preservation of explanted organs. Moreover, the results demonstrate the effect of preservation temperature on the tissue vasculature. Focusing on the topside perfusion only, the 20˚C perfusion was greater than the 5˚C perfusion, likely due to the vasoconstrictive response at the lower perfusion temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app