Add like
Add dislike
Add to saved papers

Fused Helicene Chains: Towards Twisted Graphene Nanoribbons.

By taking advantage of an unexpected regioselectivity of intramolecular Scholl reactions on pentaphenylene compounds that favors distorted [5]helicenes over their flat counterparts, a new synthetic approach to twisted graphene nanoribbons has been designed based on side-fused di-tert-butyl-[5]helicene fragments. Syntheses of both small monomers and dimers have been achieved and their structures have been studied. An iterative synthetic strategy has been developed for the formation of longer flexible precursors, which relies on the step-by-step elongation of mono-functionalized oligomeric chains. The flexible trimer and tetramer have, thus, been synthesized and submitted to intramolecular Scholl reactions, which revealed important purification and characterization issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app