Add like
Add dislike
Add to saved papers

Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap.

Nanoscale 2016 September 16
We present a new technique for the study of model membranes on the length-scale of a single nano-sized liposome. Silver decahedral nanoparticles have been encapsulated by a model unilamellar lipid bilayer creating nano-sized lipid vesicles. The metal core has two roles (i) increasing the polarizability of vesicles, enabling a single vesicle to be isolated and confined in an optical trap, and (ii) enhancing Raman scattering from the bilayer, via the high surface-plasmon field at the sharp vertices of the decahedral particles. Combined this has allowed us to measure a Raman fingerprint from a single vesicle of 50 nm-diameter, containing just ∼104 lipid molecules in a bilayer membrane over a surface area of <0.01 μm2 , equivalent to a volume of approximately 1 zepto-litre. Raman scattering is a weak and inefficient process and previous studies have required either a substantially larger bilayer area in order to obtain a detectable signal, or the tagging of lipid molecules with a chromophore to provide an indirect probe of the bilayer. Our approach is fully label-free and bio-compatible and, in the future, it will enable much more localized studies of the heterogeneous structure of lipid bilayers and of membrane-bound components than is currently possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app