Add like
Add dislike
Add to saved papers

In situ formation of the first proteinogenically functionalized [TeW 6 O 24 O 2 (Glu)] 7- structure reveals unprecedented chemical and geometrical features of the Anderson-type cluster.

The chemistry of polyoxometalates (POMs) in a protein environment is an almost unexplored but highly relevant research field as important biological and pharmacological attributes of certain POMs are based on their interactions with proteins. We report on the A-type Anderson-Evans polyoxotungstate, [TeW6 O24 ]6- (TEW), mediated crystallization of Coreopsis grandiflora aurone synthase (cgAUS1) using ∼0.24 mM protein and 1.0 mM TEW. The 1.78 Å crystal structure reveals the covalent binding of TEW to the protein under the formation of an unprecedented polyoxotungstate cluster, [TeW6 O24 O2 (Glu)]7- (GluTEW). The polyoxotungstate-protein complex exhibits the first covalent bond between a protein and the A-type Anderson-Evans cluster, an archetype where up to now no hybrid structures exist. The polyoxotungstate is modified at two of its six addenda tungsten atoms, which covalently bind to the carboxylic oxygen atoms of glutamic acid (Glu157), leading to W-O distances of ∼2.35 Å. This ligand substitution reaction is accompanied by a reduction of the coordination number of two μ3 polyoxotungstate oxygen atoms. This is so far unique since all known hybridizations of the Anderson-Evans POM with organic units have been obtained via the functionalization of the B-type Anderson-Evans structure through its bridging oxygen atoms. The structure reported here proves the reactivity of this POM archetype's addenda atoms as it has been administered into the protein solution as a pre-assembled cluster. Moreover, the novel cluster [TeW6 O24 O2 (Glu)]7- displays the great versatility of the Anderson-Evans POM class.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app