Add like
Add dislike
Add to saved papers

Direct observation of magnetic vortex behavior in an ordered La 0.7 Sr 0.3 MnO 3 dot arrays.

Directly observing the magnetic domain behavior in patterned nanostructures is crucial to the investigation into advanced spin-based devices. Herein, we show that the magnetic vortex behavior can be deterministically observed and controlled in highly spin polarized La0.7 Sr0.3 MnO3 (LSMO) triangular dots by successive in-field magnetic force microscopy (MFM). Imaging the magnetic domains with MFM shows that most of the LSMO dots exhibit magnetic vortex states with a clockwise or anticlockwise "pinwheel" structure for decreasing the demagnetization energy. Probing the vortex chirality using in-field MFM indicates that the selective spin circulation of the triangular dots depends on the magnetic orientation of the bias nanomagnet with specially designed geometries. Comparison between measurement and simulation reveals that the vortex behavior should be governed by an interface involved pinning strength at the boundaries, as well as a geometrically induced shape anisotropy of the triangular dot, both of which result in shape-dominated magnetic domain reversals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app