Add like
Add dislike
Add to saved papers

β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design.

BACKGROUND: Enzymatic hydrolysis of lactose is one of the most important biotechnological processes in the food industry, which is accomplished by enzyme β-galactosidase (β-gal, β-D-galactoside galactohydrolase, EC 3.2.1.23), trivial called lactase. Orthogonal arrays design is an appropriate option for the optimization of biotechnological processes for the production of microbial enzymes.

METHODS: Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was employed to screen the most significant levels of parameters, including the solid substrates (wheat straw, rice straw, and peanut pod), the carbon/nitrogen (C/N) ratios, the incubation time, and the inducer. The level of β-gal production was measured by a photometric enzyme activity assay using the artificial substrate ortho-Nitrophenyl-β-D-galactopyranoside.

RESULTS: The results showed that C/N ratio (0.2% [w/v], incubation time (144 hour), and solid substrate (wheat straw) were the best conditions determined by the design of experiments using the Taguchi approach.

CONCLUSION: Our finding showed that the use of rice straw and peanut pod, as solid-state substrates, led to 2.041-folds increase in the production of the enzyme, as compared to rice straw. In addition, the presence of an inducer did not have any significant impact on the enzyme production levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app