Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Activation of carbonic anhydrase IX by alternatively spliced tissue factor under late-stage tumor conditions.

Molecules of the coagulation pathway predispose patients to cancer-associated thrombosis and also trigger intracellular signaling pathways that promote cancer progression. The primary transcript of tissue factor, the main physiologic trigger of blood clotting, can undergo alternative splicing yielding a secreted variant, termed asTF (alternatively spliced tissue factor). asTF is not required for normal hemostasis, but its expression levels positively correlate with advanced tumor stages in several cancers, including pancreatic adenocarcinoma. The asTF-overexpressing pancreatic ductal adenocarcinoma cell line Pt45.P1/asTF+ and its parent cell line Pt45.P1 were tested for growth and mobility under normoxic conditions that model early-stage tumors, and in the hypoxic environment of late-stage cancers. asTF overexpression in Pt45.P1 cells conveys increased proliferative ability. According to cell cycle analysis, the major fraction of Pt45.P1/asTF+ cells reside in the dividing G2 /M phase of the cell cycle, whereas the parental Pt45.P1 cells are mostly confined to the quiescent G0 /G1 phase. asTF overexpression is also associated with significantly higher mobility in cells plated under either normoxia or hypoxia. A hypoxic environment leads to upregulation of carbonic anhydrase IX (CAIX), which is more pronounced in Pt45.P1/asTF+ cells. Inhibition of CAIX by the compound U-104 significantly decreases cell growth and mobility of Pt45.P1/asTF+ cells in hypoxia, but not in normoxia. U-104 also reduces the growth of Pt45.P1/asTF+ orthotopic tumors in nude mice. CAIX is a novel downstream mediator of asTF in pancreatic cancer, particularly under hypoxic conditions that model late-stage tumor microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app