Add like
Add dislike
Add to saved papers

Differentially expressed mitochondrial genes in breast cancer cells: Potential new targets for anti-cancer therapies.

Gene 2017 January 6
It has been reported that tumor growth and proliferation correspond to mitochondrial dysfunction and that the tumor cellular microenvironment plays a key role in tumor progression, representing an area that might be manipulated to confer therapeutic anti-tumor benefits. In this article, we have identified mitochondrial genes, largely nuclear-encoded genes, which are differentially expressed in breast cancer epithelial and stromal cells compared to cells from normal breast tissues. We determined that gene expression of the mitochondrial membrane respiratory chain complex I and IV and ATP synthesis were reduced in both in epithelial and stromal cancer cells compared to normal breast cells. We also found transport-related genes were significantly more highly expressed in breast cancer epithelial cells. Our data also suggest that mitochondria are likely to proliferate in breast cancer stromal cells, which is supported by the observation that MRPL12, POLG, and RNASEH1 are all up-regulated in cancerous stromal cells. In addition, we present an improved simulated annealing algorithm, SANetWalker, which can be used to detect the functional module. At the same time, this method has a minimal effect on network topology and can be used to identify the highest confidence functional module. Using SANetWalker, we obtained the highest confidence (90%) functional module with a fumarate hydratase (FH)-centered network with 40 nodes and 107 edges. Functional analysis revealed that glutamine metabolism genes were significantly up-regulated in both epithelial and stromal cells from breast cancer tissues, which implicates glutamine metabolism in breast cancer growth and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app