Add like
Add dislike
Add to saved papers

Fully Automated Muscle Ultrasound Analysis (MUSA): Robust and Accurate Muscle Thickness Measurement.

Musculoskeletal ultrasound imaging allows non-invasive measurement of skeletal muscle thickness. Current techniques generally suffer from manual operator dependency, while all the computer-aided approaches are limited to be semi-automatic or specifically optimized for a single muscle. The aim of this study was to develop and validate a fully automatic method, named MUSA (Muscle UltraSound Analysis), for measurement of muscle thickness on longitudinal ultrasound images acquired from different skeletal muscles. The MUSA algorithm was tested on a database of 200 B-mode ultrasound images of rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. The automatic muscle thickness measurements were compared to the manual measurements obtained by three operators. The MUSA algorithm achieved a 100% segmentation success rate, with mean differences between the automatic and manual measurements in the range of 0.06-0.45 mm. MUSA performance was statistically equal to the operators and its measurement accuracy was independent of the muscle thickness value.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app