Add like
Add dislike
Add to saved papers

Inhibition of aryl hydrocarbon receptor signaling and induction of NRF2-mediated antioxidant activity by cinnamaldehyde in human keratinocytes.

BACKGROUND: Dioxins and other environmental pollutants are toxic and remain in biological tissues for a long time leading to various levels of oxidative stress. Although the toxicity of these agents has been linked to activation of the aryl hydrocarbon receptor (AHR), no effective treatment has been developed.

OBJECTIVE: To explore novel phytochemicals that inhibit AHR activation in keratinocytes.

METHODS: Keratinocytes were used in this study because the skin is one of the organs most affected by dioxin and other environmental pollutants. HaCaT cells, which are a human keratinocyte cell line, and normal human epidermal keratinocytes were stimulated with benzo[a]pyrene to induce AHR activation, and the effects of traditional Japanese Kampo herbal formulae were analyzed. Quantification of mRNA, western blotting, immunofluorescence localization of molecules, siRNA silencing, and visualization of oxidative stress were performed.

RESULTS: Cinnamomum cassia extract and its major constituent cinnamaldehyde significantly inhibited the activation of AHR. Cinnamaldehyde also activated the NRF2/HO1 pathway and significantly alleviated the production of reactive oxygen species in keratinocytes. The inhibition of AHR signaling and the activation of antioxidant activity by cinnamaldehyde operated in a mutually independent manner as assessed by siRNA methods In addition, AHR signaling was effectively inhibited by traditional Kampo formulae containing C. cassia.

CONCLUSION: Cinnamaldehyde has two independent biological activities; namely, an inhibitory action on AHR activation and an antioxidant effect mediated by NRF2/HO1 signaling. Through these dual functions, cinnamaldehyde may be beneficial for the treatment of disorders related to oxidative stress such as dioxin intoxication, acne, and vitiligo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app