Add like
Add dislike
Add to saved papers

Predicting the distribution of whey protein fouling in a plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of β-lactoglobulin and the bulk temperature profiles.

Fouling of plate heat exchangers (PHE) is a severe problem in the dairy industry, notably because the relationship between the build-up of protein fouling deposits and the chemical reactions taking place in the fouling solution has not yet been fully elucidated. Experiments were conducted at pilot scale in a corrugated PHE, and fouling deposits were generated using a model β-lactoglobulin (β-LG) fouling solution for which the β-LG thermal denaturation reaction constants had been previously determined experimentally. Then 18 different bulk temperature profiles within the PHE were imposed. Analysis of the fouling runs shows that the dry deposit mass per channel versus the ratio R=kunf /kagg (with kunf and kagg representing, respectively, the unfolding and aggregation rate constants computed from both the identification of the β-LG thermal denaturation process and knowledge of the imposed bulk temperature profile into the PHE channel) is able to gather reasonably well the experimental fouling mass data into a unique master curve. This type of representation of the results clearly shows that the heat-induced reactions (unfolding and aggregation) of the various β-LG molecular species in the bulk fluid are essential to capture the trend of the fouling mass distribution inside a PHE. This investigation also illustrates unambiguously that the release of the unfolded β-LG (also called β-LG molten globule) within the bulk fluid (and the absence of its consumption in the form of aggregates) is a key phenomenon that controls the extent of protein fouling as well as its location inside the PHE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app