Journal Article
Review
Add like
Add dislike
Add to saved papers

L-plastin regulates the stability of the immune synapse of naive and effector T-cells.

T-cells need to be tightly regulated during their activation and effector phase to assure an appropriate defence against cancer or pathogens and - vice versa - to avoid autoimmune reactions. Regulatory signals are provided via the immune synapse between T-cells and antigen-presenting cells (APCs) or target cells. The stability and kinetics of immune synapse formation is critical for proper T-cell functions. It requires dynamic rearrangements of the actin cytoskeleton necessary for organized spatio-temporal redistribution of receptors and adhesion molecules. We identified glucocorticoid-sensitive phosphorylation of serine 5 on the actin-bundling protein L-plastin as one important signalling event for this regulation. Using imaging flow cytometry as well as confocal and super-resolution microscopy we showed that L-plastin relocalizes to the immune synapse upon antigen encounter, where it associates with the β2-subunit of LFA-1 (CD11a/CD18). Interfering with L-plastin expression or activation leads to a defective LFA-1 recruitment and unstable T-cell/APC contacts. Consequently, the lack of L-plastin diminishes T-cell activation, proliferation and proximal effector responses such as cytokine production. On the other hand, a pro-oxidative milieu leads to prolonged activation of L-plastin resulting in a stronger enrichment of LFA-1 in the cytolytic immune synapse. Concomitant stabilization of conjugates formed by cytotoxic T-cells (CTLs) and their target cells impairs the ability of CTLs to kill more than one target cells (serial killing), which de facto leads to a downregulation of T-cell cytotoxicity. Together, we demonstrate that activation and spacial distribution of L-plastin regulates the maturation and stability of activating and cytolytic immune synapses important for T-cell activation and effector functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app