Add like
Add dislike
Add to saved papers

Discovery of nanomolar ligands with novel scaffolds for the histamine H4 receptor by virtual screening.

The involvement of histamine H4 receptor (H4R) in immune cells chemotaxis and mediator release makes it an attractive target for the treatment of inflammation disorders. A decade of medicinal chemistry efforts has led to several promising ligands, although the chemical structures described so far possesses a singular limited diversity. We report here the discovery of novel structures, belonging to completely different scaffolds. The virtual screening was planed as a two-steps process. First, using a "scout screening" methodology, we have experimentally probed the H4R ligand binding site using a small size chemical library with very diverse structures, and identified a hit that further assist us in refining a raw 3D homology model. Second, the refined 3D model was used to conduct a widened virtual screening. This two-steps strategy proved to be very successful, both in terms of structural diversity and hit rate (23%). Moreover, the hits have high affinity for the H4R, with most potent ligands in the nanomolar range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app