Add like
Add dislike
Add to saved papers

Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors.

This study investigated aeration rate (0, 0.2, 0.4 and 1.0L/min) effects on algal-bacterial symbiosis (ABS) and conventional activated sludge (CAS) systems while treating domestic wastewater in sequencing batch reactors. Experiment results showed that ABS system performed better on NH4(+)-N, total nitrogen and total phosphorus removal than CAS system, especially under lower aeration rate condition (0.2Lair/min), with removal efficiencies improvements of 18.90%, 12.45% and 46.66%, respectively. The mechanism study demonstrated that a favorable aeration rate reduction (half of traditional value in CAS system) could enhance algae growth but weaken hydraulic shear force, which contributed to the interactions between algae and sludge flocs and further stability of ABS system. In addition, algae growth protected both ammonia and nitrite oxidizing bacteria from optical damage. It is expected that the present study would provide some new insights into ABS system and be helpful for development of low-energy demand wastewater treatment process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app