JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Probing gas adsorption in MOFs using an efficient ab initio widom insertion Monte Carlo method.

We propose a novel biased Widom insertion method that can efficiently compute the Henry coefficient, KH , of gas molecules inside porous materials exhibiting strong adsorption sites by employing purely DFT calculations. This is achieved by partitioning the simulation volume into strongly and weakly adsorbing regions and selectively biasing the Widom insertion moves into the former region. We show that only few thousands of single point energy calculations are necessary to achieve accurate statistics compared to many hundreds of thousands or millions of such calculations in conventional random insertions. The methodology is used to compute the Henry coefficient for CO2 , N2 , CH4 , and C2 H2 in M-MOF-74(M = Zn and Mg), yielding good agreement with published experimental data. Our results demonstrate that the DFT binding energy and the heat of adsorption are not accurate enough indicators to rank the guest adsorption properties at the Henry regime. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app