JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Renin-angiotensin system in vertebrates: phylogenetic view of structure and function.

Renin substrate, biological renin activity, and/or renin-secreting cells in kidneys evolved at an early stage of vertebrate phylogeny. Angiotensin (Ang) I and II molecules have been identified biochemically in representative species of all vertebrate classes, although variation occurs in amino acids at positions 1, 5, and 9 of Ang I. Variations have also evolved in amino acid positions 3 and 4 in some cartilaginous fish. Angiotensin receptors, AT1 and AT2 homologues, have been identified molecularly or characterized pharmacologically in nonmammalian vertebrates. Also, various forms of angiotensins that bypass the traditional renin-angiotensin system (RAS) cascades or those from large peptide substrates, particularly in tissues, are present. Nonetheless, the phylogenetically important functions of RAS are to maintain blood pressure/blood volume homeostasis and ion-fluid balance via the kidney and central mechanisms. Stimulation of cell growth and vascularization, possibly via paracrine action of angiotensins, and the molecular biology of RAS and its receptors have been intensive research foci. This review provides an overview of: (1) the phylogenetic appearance, structure, and biochemistry of the RAS cascade; (2) the properties of angiotensin receptors from comparative viewpoints; and (3) the functions and regulation of the RAS in nonmammalian vertebrates. Discussions focus on the most fundamental functions of the RAS that have been conserved throughout phylogenetic advancement, as well as on their physiological implications and significance. Examining the biological history of RAS will help us analyze the complex RAS systems of mammals. Furthermore, suitable models for answering specific questions are often found in more primitive animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app