JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

White-Tailed Deer as an Ex Vivo Knee Model: Joint Morphometry and ACL Rupture Strength.

Animal joints are valuable proxies for those of humans in biomechanical studies, however commonly used quadruped knees differ greatly from human knees in scale and morphometry. To test the suitability of the cervine stifle joint (deer knee) as a laboratory model, gross morphometry, ACL cross section, and ACL rupture strength were measured and compared to values previously reported for the knees of humans and commonly studied animals. Twelve knee joints from wild white-tailed deer were tested. Several morphometry parameters, including bicondylar width (53.5 ± 3.0 mm) and notch width (14.7 ± 2.5 mm), showed a high degree of similarity to those of the human knee, while both medial (16.7 ± 2.1°) and lateral (17.6 ± 4.7°) tibial slopes were steeper than in humans but less steep than other quadrupeds. The median ACL rupture force (2054 N, 95% CI 2017-2256 N), mean stiffness (260 ± 166 N/mm), mean length (33 ± 7 mm), and mean cross sectional area (44.8 ± 18.3 mm2 ) were also comparable to previously reported values for human knees. In our limited sample size, no significant sexual dimorphism in strength or morphometry was observed (p ≥ 0.05 for all parameters), though female specimens generally had steeper tibial slopes (lateral: p = 0.52, medial: p = 0.07). Our results suggest that the deer knee may be a suitable model for ex vivo studies of ACL rupture and repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app