Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Probabilistic finite element method for large tumor radiofrequency ablation simulation and planning.

A challenging problem of radiofrequency ablation (RFA) in liver surgery is to accurately estimate the shapes and sizes of RFA lesions whose formation depends on intrinsic variations of the thermal-electrical properties of soft tissue. Large tumors, which can be as long as 10 cm or more, further complicate the problem. In this paper, a probabilistic bio-heating finite element (FE) model is proposed and developed to predict RFA lesions. Uncertainties of RFA lesions are caused by the probabilistic nature of five thermal-electrical liver properties: thermal conductivity, liver tissue density, specific heat, blood perfusion rate and electrical conductivity. Confidence levels of shapes and sizes of lesions are generated by the FE model incorporated with the mean-value first-order second-moment (MVFOSM) method. Based on the probabilistic FE method, a workflow of RFA planning is introduced to enable clinicians to preoperatively view the predicted RFA lesions in three-dimension (3D) within a hepatic environment. Accurate planning of the RFA needle placements can then be achieved based on the interactive simulation and confidence level selection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app