JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microscopic DTI accurately identifies early glioma cell migration: correlation with multimodal imaging in a new glioma stem cell model.

NMR in Biomedicine 2016 November
Monitoring glioma cell infiltration in the brain is critical for diagnosis and therapy. Using a new glioma Glio6 mouse model derived from human stem cells we show how diffusion tensor imaging (DTI) may predict glioma cell migration/invasion. In vivo multiparametric MRI was performed at one, two and three months of Glio6 glioma growth (Glio6 (n = 6), sham (n = 3)). This longitudinal study reveals the existence of a time window to study glioma cell/migration/invasion selectively. Indeed, at two months only Glio6 cell invasion was detected, while tumor mass formation, edema, blood-brain barrier leakage and tumor angiogenesis were detected later, at three months. To robustly confirm the potential of DTI for detecting glioma cell migration/invasion, a microscopic 3D-DTI (80 μm isotropic spatial resolution) technique was developed and applied to fixed mouse brains (Glio6 (n = 6), sham (n = 3)). DTI changes were predominant in the corpus callosum (CC), a known path of cell migration. Fractional anisotropy (FA) and perpendicular diffusivity (D⊥ ) changes derived from ex vivo microscopic 3D-DTI were significant at two months of tumor growth. In the caudate putamen an FA increase of +38% (p < 0.001) was observed, while in the CC a - 28% decrease in FA (p < 0.005) and a + 95% increase in D⊥ (p < 0.005) were observed. In the CC, DTI changes and fluorescent Glio6 cell density obtained by two-photon microscopy in the same brains were correlated (p < 0.001, r = 0.69), validating FA and D⊥ as early quantitative biomarkers to detect glioma cell migration/invasion. The origin of DTI changes was assessed by electron microscopy of the same tract, showing axon bundle disorganization. During the first two months, Glio6 cells display a migratory phenotype without being associated with the constitution of a brain tumor mass. This offers a unique opportunity to apply microscopic 3D-DTI and to validate DTI parameters FA and D⊥ as biomarkers for glioma cell invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app