Add like
Add dislike
Add to saved papers

The excellent performance of nest-like oxygen-deficient Cu1.5Mn1.5O4 applied in activated carbon air-cathode microbial fuel cell.

This study investigated the performance of nano spinel nest-like oxygen-deficient Cu1.5Mn1.5O4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu1.5Mn1.5O4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu1.5Mn1.5O4 modified cathode was 1928±18mWm(-2), which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu1.5Mn1.5O4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu1.5Mn1.5O4 played an important role in catalytic activity. So Cu1.5Mn1.5O4 would be an excellent promising catalyst for ORR in MFC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app