Add like
Add dislike
Add to saved papers

Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework.

BMC Bioinformatics 2016 October 4
BACKGROUND: In omics data integration studies, it is common, for a variety of reasons, for some individuals to not be present in all data tables. Missing row values are challenging to deal with because most statistical methods cannot be directly applied to incomplete datasets. To overcome this issue, we propose a multiple imputation (MI) approach in a multivariate framework. In this study, we focus on multiple factor analysis (MFA) as a tool to compare and integrate multiple layers of information. MI involves filling the missing rows with plausible values, resulting in M completed datasets. MFA is then applied to each completed dataset to produce M different configurations (the matrices of coordinates of individuals). Finally, the M configurations are combined to yield a single consensus solution.

RESULTS: We assessed the performance of our method, named MI-MFA, on two real omics datasets. Incomplete artificial datasets with different patterns of missingness were created from these data. The MI-MFA results were compared with two other approaches i.e., regularized iterative MFA (RI-MFA) and mean variable imputation (MVI-MFA). For each configuration resulting from these three strategies, the suitability of the solution was determined against the true MFA configuration obtained from the original data and a comprehensive graphical comparison showing how the MI-, RI- or MVI-MFA configurations diverge from the true configuration was produced. Two approaches i.e., confidence ellipses and convex hulls, to visualize and assess the uncertainty due to missing values were also described. We showed how the areas of ellipses and convex hulls increased with the number of missing individuals. A free and easy-to-use code was proposed to implement the MI-MFA method in the R statistical environment.

CONCLUSIONS: We believe that MI-MFA provides a useful and attractive method for estimating the coordinates of individuals on the first MFA components despite missing rows. MI-MFA configurations were close to the true configuration even when many individuals were missing in several data tables. This method takes into account the uncertainty of MI-MFA configurations induced by the missing rows, thereby allowing the reliability of the results to be evaluated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app