Add like
Add dislike
Add to saved papers

Machine Learning Energies of 2 Million Elpasolite (ABC_{2}D_{6}) Crystals.

Physical Review Letters 2016 September 24
Elpasolite is the predominant quaternary crystal structure (AlNaK_{2}F_{6} prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ∼2×10^{6} pristine ABC_{2}D_{6} elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1  eV/atom for a training set consisting of 10×10^{3} crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2×10^{6} crystals, 90 unique structures are predicted to be on the convex hull-among which is NFAl_{2}Ca_{6}, with a peculiar stoichiometry and a negative atomic oxidation state for Al.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app