JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Template Determines Whether Chemically Identical Nanoparticle Scaffolds Show Elastic Recovery or Plastic Failure.

Subtle variations in the preparation of ice-templated nanoparticle assemblies yield monoliths that are chemically identical but exhibit qualitatively different mechanical behavior. We ice template aqueous dispersions to prepare macroporous monoliths largely comprising silica nanoparticles held together by a crosslinked polymer mesh. When the polymer is crosslinked in the presence of ice crystals, we obtain an elastic sponge that is capable of recovery after imposition of large compressive strains (up to 80%). If, however, the ice is lyophilized before the polymer is crosslinked, we obtain a plastic monolith that fails even for modest strains (less than 10%). The elastic sponge and the plastic monolith are chemically identical; they have the same organic content, the same ratio of polymer to crosslinker, and the same average crosslink density. Atomic force microscopy (AFM) was used to probe the local mechanical properties of the crosslinked polymer mesh. These measurements indicate that plastic monoliths dissipate significantly more energy and have a larger spatial variation in local mechanical response relative to the elastic sponges. We believe that this behavior might correlate with a wider spatial distribution of crosslinks in plastic scaffolds relative to elastic scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app