Add like
Add dislike
Add to saved papers

Surface-Independent Hierarchical Coatings with Superamphiphobic Properties.

Facile approaches for the fabrication of substrate independent superamphiphobic surfaces that can repel both water and organic liquids have been limited. The design of such super-repellent surfaces is still a major challenge of surface chemistry and physics. Herein, we describe a simple and efficient dip-coating approach for the fabrication of highly hierarchical surface coatings with superamphiphobic properties for a broad range of materials based on a mussel-inspired dendritic polymer (MI-dPG). The MI-dPG coating process provides a precise roughness control, and the construction of highly hierarchical structures was achieved either directly by pH-controlled aggregation or in combination with nanoparticles (NP). Moreover, the fabrication of coatings with a thickness and roughness gradient was possible via simple adjustment of the depth of the coating solution. Subsequent postmodification of these highly hierarchical structures with fluorinated molecules yielded a surface with superamphiphobic properties that successfully prevented the wetting of liquids with a low surface tension down to about 30 mN/m. The generated superamphiphobic coatings exhibit impressive repellency to water, surfactant containing solutions, and biological liquids, such as human serum, and are flexible on soft substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app