Journal Article
Review
Add like
Add dislike
Add to saved papers

Fracture toughness of hydrogels: measurement and interpretation.

Soft Matter 2016 October 5
The fracture mechanics of hydrogels, especially those with significantly enhanced toughness, has attracted extensive research interests. In this article we discuss the experimental measurement and theoretical interpretation of the fracture toughness for soft hydrogels. We first review the definition of fracture toughness for elastic materials, and the commonly used experimental configurations to measure it. In reality most gels are inelastic. For gels that are rate insensitive, we discuss how to interpret the fracture toughness associated with two distinct scenarios: crack initiation and steady-state crack propagation. A formulation to estimate energy dissipation during steady-state crack propagation is developed, and connections to previous models in the literature are made. For gels with rate-dependent behaviors, we review the physical mechanisms responsible for the rate-dependence, and outline the difficulties to rigorously define the fracture toughness for both crack initiation and propagation. We conclude by discussing a few fundamental questions on the fracture of tough gels that are yet to be answered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app