Add like
Add dislike
Add to saved papers

Nanoparticle diffusion in crowded and confined media.

Soft Matter 2016 October 13
We identify distinct mechanisms controlling slowing of nanoparticle diffusion through complex media featuring both rigid geometrical confinement and soft mobile crowders. Towards this end, we use confocal microscopy and single particle tracking to probe the diffusion of 400 nm nanoparticles suspended in Newtonian water, in a Newtonian glycerol/water mixture, or in a non-Newtonian polymer solution through a model porous medium, a packed bed of microscale glass beads. The mobility of nanoparticles, as quantified by the long-time diffusion coefficient extracted from the particle mean-squared displacement, slows as the average pore size of the packed bed media decreases for both Newtonian and non-Newtonian solutions. The distribution of particle displacements is non-Gaussian, consistent with the spatial heterogeneity of the geometrical confinement imposed by the packed bed. The slowing of nanoparticle mobility in all solutions follows the predictions of models that describe hydrodynamic interactions with the packed bed. In non-Newtonian solutions, depletion interactions due to the polymers near the glass beads result in temporary adsorption of particles onto the bead surface, as indicated by a stretched-exponential distribution of residence times. Our results therefore suggest that the confined diffusive dynamics of nanoparticles in polymer solutions is controlled by two competing mechanisms: hydrodynamic interactions between particles and spatial obstacles, which dictate the long-time slowing of diffusion, and depletion interactions between particles and confining walls due to the macromolecules, which control transient adsorption and hence alter the statistics of the short-time motion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app