Add like
Add dislike
Add to saved papers

An ultrasensitive SERS sensor for simultaneous detection of multiple cancer-related miRNAs.

Nanoscale 2016 October 7
Simultaneous detection of multiple trace cancer associated serum miRNA biomarkers is considered as a feasible method for early cancer screening and diagnosis. In the present work, an ultrasensitive SERS sensor was prepared based on an Ag nanorod array SERS substrate by assembling special hairpin-shaped molecular beacons (MBs) for the detection of multiple lung cancer-related miRNA biomarkers. The portable SERS sensor exhibits excellent performance for the qualitative and quantitative detection of miRNAs, with advantages of ultra-sensitivity, good specificity, uniformity, reproducibility and stability, as well as remarkable reusability. By monitoring the SERS signal quenching of the MBs in the presence of target miRNA biomarkers, three lung cancer related-miRNAs (miRNA-21, miRNA-486, and miRNA-375) in buffer and human serum were simultaneously assayed using the SERS sensor array, and the limits of detection of the three miRNAs in human serum are 393 aM, 176 aM, and 144 aM, respectively. The reliable results demonstrate that the proposed SERS sensor array can be a promising candidate with great potential for the screening and clinical diagnosis of cancer in the early stage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app