Add like
Add dislike
Add to saved papers

Monolayer graphene sensing enabled by the strong Fano-resonant metasurface.

Nanoscale 2016 October 7
Recent advances in graphene photonics reveal promising applications in the technologically important terahertz spectrum, where graphene-based active terahertz metamaterial modulators have been experimentally demonstrated. However, the sensitivity of the atomically thin graphene monolayer towards sharp Fano resonant terahertz metasurfaces remains unexplored. Here, we demonstrate thin-film sensing of the graphene monolayer with a high quality factor terahertz Fano resonance in metasurfaces consisting of a two-dimensional array of asymmetric resonators. A drastic change in the transmission amplitude of the Fano resonance was observed due to strong interactions between the monolayer graphene and the tightly confined electric fields in the capacitive gaps of the Fano resonator. The deep-subwavelength sensing of the atomically thin monolayer graphene further highlights the extreme sensitivity of the resonant electric field excited at the dark Fano resonance, allowing the detection of an analyte that is λ/1 000 000 thinner than the free space wavelength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app