Add like
Add dislike
Add to saved papers

Photon-induced generation and spatial control of extreme pressure at the nanoscale with a gold bowtie nano-antenna platform.

Nanoscale 2016 October 7
Precise spatial and temporal control of pressure stimulation at the nanometer scale is essential for the fabrication and manipulation of nano-objects, and for exploring single-molecule behaviour of matter under extreme conditions. However, state-of-the-art nano-mechanical transducers require sophisticated driving hardware and are currently limited to moderate pressure regimes. Here we report a gold plasmonic bowtie (AuBT) nano-antennas array that can generate extreme pressure stimulus of ∼100 GPa in the ps (10-12 s) time scale with sub-wavelength resolution upon irradiation with ultra-short laser pulses. Our method leverages the non-linear interaction of photons with water molecules to excite a nano-plasma in the plasmon-enhanced near-field and induce extreme thermodynamic states. The proposed method utilizes laser pulses, which in contrast to micro- and nano-mechanical actuators offers simplicity and versatility. We present time-resolved shadowgraphic imaging, electron microscopy and simulation data that suggest that our platform can efficiently create cavitation nano-bubbles and generate intense pressure in specific patterns, which can be controlled by the selective excitation of plasmon modes of distinct polarizations. This novel platform should enable probing non-invasively the mechanical response of cells and single-molecules at time and pressure regimes that are currently difficult to reach with other methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app