Add like
Add dislike
Add to saved papers

The interface of SrTiO3 and H2O from density functional theory molecular dynamics.

We use dispersion-corrected density functional theory molecular dynamics simulations to predict the ionic, electronic and vibrational properties of the SrTiO3/H2O solid-liquid interface. Approximately 50% of surface oxygens on the planar SrO termination are hydroxylated at all studied levels of water coverage, the corresponding number being 15% for the planar TiO2 termination and 5% on the stepped TiO2-terminated surface. The lateral ordering of the hydration structure is largely controlled by covalent-like surface cation to H2O bonding and surface corrugation. We find a featureless electronic density of states in and around the band gap energy region at the solid-liquid interface. The vibrational spectrum indicates redshifting of the O-H stretching band due to surface-to-liquid hydrogen bonding and blueshifting due to high-frequency stretching vibrations of OH fragments within the liquid, as well as strong suppression of the OH stretching band on the stepped surface. We find highly varying rates of proton transfer above different SrTiO3 surfaces, owing to differences in hydrogen bond strength and the degree of dissociation of incident water. Trends in proton dynamics and the mode of H2O adsorption among studied surfaces can be explained by the differential ionicity of the Ti-O and Sr-O bonds in the SrTiO3 crystal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app