JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

1/f 2 noise in bistable electrocatalytic reactions on mesoscale electrodes.

Faraday Discussions 2016 November 2
The formation of a self-organized spatial domain during current-controlled CO oxidation, a kinetically bistable reaction, is investigated experimentally and by deterministic simulations as a function of the electrode size and of the supporting electrolyte concentration. Decreasing the microelectrode size leads to the suppression of the spatial instability at the electrode and thus stabilizes the S-NDR branch of the reaction. The critical microelectrode size capable of supporting sustained domain formation is shown to be strongly affected by the sulfuric acid concentration, the characteristic time of the positive feedback loop increasing with the sulfate concentration. Furthermore, we demonstrate that for microelectrode diameters close to the instability threshold, small amplitude electrochemical potential fluctuations appear in the system. These potential fluctuations cannot be captured by deterministic mathematical models and are attributed to a strong enhancement of molecular fluctuations or intrinsic noise in the vicinity of the spatial instability. Analysis of the electrochemical noise revealed a 1/f 2 frequency dependence and several common features with neuronal shot noise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app