Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants.

Analytical Chemistry 2016 November 2
A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10-6 cm2 /s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion-temperature plots produced linear (r2 > 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of <45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app