Add like
Add dislike
Add to saved papers

Room-Temperature Synthesis of Covalent Organic Frameworks with a Boronic Ester Linkage at the Liquid/Solid Interface.

With various prospected applications in the field of nanoelectronics and catalysis, on-surface synthesis of single-layer covalent organic frameworks (surface COFs) with designable structures and properties have attracted enormous interest. Herein, we report on a scanning tunneling microscopic investigation of the surface-confined synthesis of a covalently bonded boronic ester network directly at the octanoic acid/ highly oriented pyrolytic graphite(HOPG) interface under room temperature. The dynamic reaction process was investigated in detail. STM results indicate that the surface networks undergo structural evolution from a hybrid covalent/noncovalent multiwall porous network to single-wall hexagonal COF with the decrease of monomer concentration. Further experimental observation disclosed that the boronic ester-linked system is sensitive to instantaneous voltage pulses and the stimulation of the STM tip. In addition, the 1 H NMR spectra has further confirmed that the surface and octanoic acid may play important roles in promoting the reaction between 4,4'-phenylazobenzoyl diboronic acid (ABBA) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) building units.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app