Add like
Add dislike
Add to saved papers

Torsional and Electronic Factors Control the C-H⋅⋅⋅O Interaction.

The precise role of non-conventional hydrogen bonds such as the C-H⋅⋅⋅O interaction in influencing the conformation of small molecules remains unresolved. Here we survey a series of β-turn mimetics using X-ray crystallography and NMR spectroscopy in conjunction with quantum calculation, and conclude that favourable torsional and electronic effects are important for the population of states with conformationally influential C-H⋅⋅⋅O interactions. Our results also highlight the challenge in attempting to deconvolute a myriad of interdependent noncovalent interactions in order to focus on the contribution of a single one. Within a small molecule that is designed to resemble the complexity of the environment within peptides and proteins, the interplay of different steric burdens, hydrogen-acceptor/-donor properties and rotational profiles illustrate why unambiguous conclusions based solely on NMR chemical shift data are extremely challenging to rationalize.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app