JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Refractive indices of organo-metallic and -metalloid compounds: A long-range corrected DFT study.

Refractive indices of metal- and metalloid-containing compounds are systematically evaluated using the Lorentz-Lorenz equation with polarizabilities obtained via density functional theory (DFT). Among exchange-correlation functionals studied, the long-range corrected (LC) fuctionals yield the lowest errors for the polarizabilities of gaseous compounds and refractive indices of liquids. The LC-DFT predicts very well the wavelength dependence of refractive indices. A scheme for computing Abbe numbers of organometallic and organometaloid compounds is proposed and a refractive index - Abbe number plot for 80 compounds is constructed. The compounds containing heavier metals tend to have higher refractive index and lower Abbe number, but several outliers, among them Te(CH3 )2 , Ni(PF3 )4 , Sb(C2 F3 )3 , Hg(C2 F3 )2 , are found. For Hg(C2 F3 )2 , also the effect of intramolecular and intermolecular degrees of freedom on polarizability is investigated. The absolute relative error in polarizability decreases from 5.7% for monomer model to 1.7% when a dimer model (derived from the available experimental crystal data) is employed. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app