Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of porcine MyD88 knockdown on the expression of TLR4 pathway-related genes and proinflammatory cytokines.

Bioscience Reports 2016 December
As a critical adapter protein in Toll-like receptor (TLR)/Interleukin (IL)-1R signalling pathway, myeloid differentiation protein 88 (MyD88) plays an important role in immune responses and host defence against pathogens. The present study was designed to provide a foundation and an important reagent for the mechanistic study of MyD88 and its role TLR/IL-1R signalling pathways in porcine immunity. Lentivirus-mediated RNAi was used to generate a porcine PK15 cell line with a silenced MyD88 gene and quantitative real-time PCR (qPCR) and Western blotting were used to detect changes in the expression of critical genes in the Toll-like receptor 4 (TLR4) signalling pathway. ELISA was used to measure the levels of seven proinflammatory cytokines-interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, macrophage inflammatory protein (MIP)-1α and MIP-1β-in cell culture supernatants after MyD88 silencing. We successfully obtained a PK15 cell line with 61% MyD88 mRNA transcript down-regulated. In PK15 cells with MyD88 silencing, the transcript levels of TLR4 and IL-1β were significantly reduced, whereas there were no significant changes in the expression levels of cluster of differentiation antigen 14 (CD14), interferon-α (IFN-α) or TNF-α The ELISA results showed that the levels of most cytokines were not significantly changed apart from IL-8 without stimulation, which was significantly up-regulated. When cells were induced by lipopolysaccharide (LPS) (0.1 μg/ml) for 6 h, the global level of seven proinflammatory cytokines up-regulated and the level of IL-1β, TNF-α, IL-6, IL-8 and IL-12 of Blank and negative control (NC) group up-regulated more significantly than RNAi group (P<0.05), which revealed that the MyD88 silencing could reduce the TLR4 signal transduction which inhibited the release of proinflammatory cytokines and finally leaded to immunosuppression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app